# On Girsanov Theorem to switch from Risk-Neutral to Stock Numeraire

Summary: long-story cut short, the question is asking for what types of functions $$f(.)$$, the Cameron-Martin-Girsanov theorem can be used as follows:

$$mathbb{E}^{mathbb{P}^2}[f(W_t)]=mathbb{E}^{mathbb{P}^1}left[frac{dmathbb{P}^2}{dmathbb{P}^1}f(W_t)right]$$

Long story: the Radon-Nikodym when changing from risk-neutral to Stock measure is:

$$frac{dN^{S}}{dN^{Q}}=frac{N^{Q}_{t_0}}{N^{Q}_{t}} frac{N^{S}_{t}}{N^{S}_{t_0}}=frac{1}{e^{rt}}frac{S_t}{S_{t_0}}=e^{-0.5sigma^2t+sigma W_t}$$

The following type of calc is often seen in finance:

$$mathbb{E}^{N^S}left[S_t right]=mathbb{E}^{N^Q}left[S_t^Q frac{dN^{S}}{dN^{Q}} right]=\=mathbb{E}[S_t^Q*e^{-0.5sigma^2t+sigma W_t}]=\=S_0e^{rt-0.5sigma^2t+sigma W_t}*e^{-0.5sigma^2t+sigma W_t}=\=S_0e^{rt+sigma^2t}$$

The CMG theorem tells us that the Radon-Nikodym derivative $$e^{-0.5sigma^2t+sigma W_t}$$ can be applied to $$W_t$$ directly to modify it’s drift and to create some new measure under which $$W_t$$ will no longer be a Standard Brownian motion. If we step-away from finance and denote the measure under which $$W_t$$ is standard Brownian as $$mathbb{P}^1$$, the new measure under which $$W_t$$ is a Brownian with a drift as $$mathbb{P}^2$$, and the radon-nikodym as $$frac{dmathbb{P}^2}{dmathbb{P}^1}$$, we can write:

$$mathbb{P}^2(W_t

The above is basically the definition of $$mathbb{P^2}$$ via the implicit definition of the Radon-Nikodym derivative. An extension of the above definition is that:

$$mathbb{E}^{mathbb{P}^2}[W_t]=mathbb{E}^{mathbb{P}^1}left[frac{dmathbb{P}^2}{dmathbb{P}^1}W_tright]$$

Question: in our finance case of stock, the stock price process is actually a function of $$W_t$$, so we could write $$S_t=f(W_t)$$. In the equation $$mathbb{E}^{N^S}left[S_t right]=mathbb{E}^{N^Q}left[S_t^Q frac{dN^{S}}{dN^{Q}} right]$$, we are actually using the fact that:

$$mathbb{E}^{mathbb{P}^2}[f(W_t)]=mathbb{E}^{mathbb{P}^1}left[frac{dmathbb{P}^2}{dmathbb{P}^1}f(W_t)right]$$

Is there an easy way to prove that we can do that? Obviously it does work as shown in the case of the stock price process above, because it produces the correct result. But for what $$f(.)$$ does the result hold? I am sure there must be some restrictions on the types of functions $$f(.)$$ for which the result holds true.

Quantitative Finance Asked by Jan Stuller on September 27, 2020

(I might not be answering your question, but I feel this clarification is needed.)

A random variable $$X$$ of $$(Omega, mathcal{F})$$ is a $$mathcal{F}$$-measurable function $$X : Omega → mathbf{R}$$. So, $$X$$ depends on $$Omega$$ and $$mathcal{F}$$, but does not depend on the probability measure put on $$(Omega, mathcal{F})$$. It is the distribution of $$X$$ that depends on the measure.

Given $$P1$$ and $$P_2$$ probability measures on $$(Omega, mathcal{F})$$, where $$P_2$$ is $$P_1$$-absolutely continuous on $$mathcal{F}$$ and $$L = frac{dP_2}{dP_1}$$ is the Radon-Nicodym derivative ($$mathcal{F}$$-measurable, $$mathcal{P_1}$$-integrable), we have: $$Xin L^1(Omega, P_2) iff XLin L^1(Omega, P_1).$$ In that case, we then have: $$mathbf{E}^{P_2}[X] = mathbf{E}^{P_1}[XL]$$

or in its integral form:

$$int_Omega X dP_2 = int_Omega X frac{dP_2}{dP_1} dP_1$$

(Note that there is no need to introduce notation $$X^{P_2}$$ competing with $$X$$.)

$$mathbf{E}^{P_2}[f(W_t)] = mathbf{E}^{P_2}[f(W_t^theta -int_0^t theta_u du)]$$

if $$P_2$$ is the Girsanov measure built from process $$theta$$ and $$W_t^theta = W_t +int_0^t theta_u du$$ is the induced Brownian motion under $$P_2$$ ($$W_t$$ is a Brownian motion under $$P_1$$). One can compute the expectation under $$P_2$$. Or go back to $$P_1$$ as you said:

$$mathbf{E}^{P_2}[f(W_t)] = mathbf{E}^{P_1}left[f(W_t)frac{dP_2}{dP_1} right].$$

In your case $$theta_t = sigma$$ and

$$frac{dP_2}{dP_1} =expleft(-frac{sigma^2}{2} t + sigma W_t right).$$

Answered by ir7 on September 27, 2020

## Related Questions

### simulate volatility surface

1  Asked on November 27, 2020 by therealcode

### Creating daily rebalancing stock portfolios based on analyst recommendations

0  Asked on November 26, 2020 by mr-sandwich

### How can the increments of a CIR process be derived?

1  Asked on November 19, 2020 by john-smith

1  Asked on November 12, 2020 by mbz0

### Where can I get some Inflation Option example quotes (year-on-year and zero-coupon)

1  Asked on October 21, 2020 by kiann

### Is there a good backtesting package in R?

3  Asked on October 17, 2020 by alonch7

### How to deal with missing stock returns?

1  Asked on October 14, 2020 by johncena12345678

### On Girsanov Theorem to switch from Risk-Neutral to Stock Numeraire

1  Asked on September 27, 2020 by jan-stuller

### Market Maker option’s pricing with reference spot

1  Asked on September 18, 2020 by dum03

### FX Carry Trade and how to calculate it

0  Asked on September 12, 2020 by zgz

### Difference between Order Expire and Order Done for Day (DFD)

1  Asked on August 21, 2020 by abnv

### How to download full daily historical data of MSCI AC Asia Index

1  Asked on August 13, 2020 by monicam

### Implied Volatility from Heston Model

1  Asked on August 3, 2020